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ABSTRACT. Developed in this report are expressions
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NOMENCLATURE

apn Fourier coefficient of ctn(ý)

n Birnbaum coefficient of gn(C)
0v Birnbaum coefficient of ga(t)

Cvi Birnbaum coefficient of lýCvl1(0) Birnbaum coefficient for unit angle of attack

CL Total normal coefficient of lift

CM Total pitching moment coefficient

gn(•) Fourier coefficient of y(,, P

g0 (ý) Ring vortex density due to conicity

go0 ' (G) Ring vortex density resulting from cambered section

OFV

W gl(,) Ring vortex density resulting from angle of attack

L Length of cyhndrical wing

M Total pitching moment

R Radius of cylindrical wing

Un(h) Velocity influence function

U I(T) Velocity influence function for a 1

V Free-stream velocity

Vr Free-stream radial component of velocity

)ýac Aerodynamic center measured fioom mid-chord point

X, R, 4 Coordinates of cylindrical wing

XZ Pitch plane

Y Total net force normal to wing axis

iv
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Q(•, P) L-cal angle of incidknce

an•),- n=0, 1,2 ... Fou:iei coefficient of a(ý, •)

Q0 •{ Slope of wing profile lor cambered section

a0 Half-cone angle (conicity) o. wing section

(1  Free stream angle of attack

y(•, •) 'otal ring vortex density

ap Force per unit area

= 2X/L Dimensionless axial coordinate -l < E< 1

•,' Dimensionless variable of integration -1 <_' < I
= -T') Argument of velocity influence function

E A.ngular coordinate in Biryibaum (xpanision

X = L/R Wing length-diameter ratio

p Fluid density

v
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INTRODUCTION

Two-dimensional airfoil theory is known to be in a highli developed
state and to provide an accurate description of airfoil flow charactel'is-
tics. in ordinary two-dimensional thin airfoil theory, two classes of
prob]ems exist., (1) the direct problem in which the velocity and pres-
sure fields are known and the airfoil geometry is to be determined; and
(2) the indirect problem in which the geometry is given and ihe flow
field characteristics about the airfoil are to be determined. A typical
problem in which the indirect method is employed is the calculation of
.panwise loadings on finite wings for which tie geometry of the wing
is known.

Until recently, three-dimensional ring airfoii theory had been less
well developed. However, techniques employing lilting-surface theory
now account itor three-dimensional effects due to ckirvature of the chord
plane. It has Leen shown that, if the radius of curvature of '-he chord
plane for a ring wing is small relative to the chord length, the aerody-
namic characteristics for a iing wing differ markedly from the flow
characteristics of a two-dihrensioioal airfoil.

This report is concerned with loadings on the v'iolated cylindrical
ring wing at angle of attack. A subsequent report will discuss loadings
on ring wings of arbitrary profile with wing-body interference effects.

GENERA L FORM OF BOUNDARY CONDITION
FOR RING WINGS

Using cylindrical coordinates X, R, ý with the origin at the wing
center as represented in rig. 1, a thin ring wing is replaced by a
cylindrical ortex surface of radius R. This is equivalent to a thin
airfoil-type approximation in which the velocities and pressures on the
ring wing are represented by the velocities and pressures induced by a
cylindrical vortex surface at the radial distance R, where R is inter-
preted to mean the average radial distance of the wing camber line.
The net loading or difference in pressure per unit length per unit span
induced by the vortex surface is represented by the Kutta-Joukowski
relation

2X• -!• Z~~~ p = p V -y ( • , • } ,• = - - - I < r, < 1( )

L
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CL> 0

-x
dX

FIG. 1. Zor"itcs.

where y(•, 4•) is the density of the ring vortices on the cylindrical sur-
face. The density can be written

S' V~gn(•) cos n b (2)

gn(•) =CQnctg- + Cvn sin vO, • = -cose, n =C(, 1, .. (3)

The components of ring density, gn(•), are represente-l as a Birn-

baum series, Eq. 3, and thus satisfy the Kutta condition at the trailing

edge y(1(0.0.=00

veloecityiad age ofattack between the wing axis and the free stream
velcit an asperified local slope of the wing profile relative to the

wing axis, the indirect approach is taken, from which the ring vortex
d.ensity dist..ibution is solved from the known geometry. Combining the
slope of the profile with anglc of attack gives an effectlve geometry or
local angle of incidence

n(, ' = n0 an (•~) cos n4' (4)

an(.)- 2o + apncospO, = -cose (5)

22
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The ring vortex density distribution, y(,, p), must satisfy the
boundary condition by removing the radial v,wash or local angle of inci-
dence, a(ý, p). For a fixed value of n, the boundary condition in
Weissinger's notation is written

aInR) cos ný = -- gn(ý')cos n dý' F - f cos n4 dý'
4 -1I 1 - '

+ - gn(') Un(n) cosn ý dý' n 10, 1, 2 ... (6)

whe r e. LX --- , n := X(• G '
ZR

The total boundary condition is obtained by summing the boundary
conditions for corresponding components of a(,, p) and y(T, ý) over all
values of n. Thus

San- I gos n cos n np dr)
nc sI gn((') cos n p dn'nOn=O 4 1

1 J-•1 gn•'1cos n ý dý'

+ n=0

-- y 1) l Un(-) cos n¢ dt' (7)
Z wr n =0 1ign %z n (,

For a symmetrical ring wing, the local slope of the profile is in-
dependent of c. Thus the local slope of the profile is the term of
a(,, q)) on the left side of Eq. 7 for the case n = 0. Setting ao(,) = a0"*(ý)
then, for a wing with conicity and camber, the slope of the profile rela-
tive to the wing axis can be written

0 ( = + o () (8)

where a 0 is the half-cone angle and a 0 *(ý) is the slope of the wing pro-
file for the cambered section.

From Fig. 2 it can be seen that for any wing section, the free-
stream radial component of velocity is dependent on ý and determines
the remaining term of a(,, 4) on the left side of Eq. 7 for the case n = 1.
The free-stream radial component of velocity becomes

3
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z

Vr = Vsin al Cos V n a

FIG. 2. Free-Stream Angle of Attack as a
Function of 4.,

Vr = Vsin a, cos (9)

For small al, Eq. 9 can be written

Vr

- = cos •, QI constant (10)
V

where al is the angle of attack between the wing axis and the free
stream, in the XZ plane and al cos cb is the angle of attack in the XR

plane.

Combining the slope of the profile with free-stream angle of attack,
Eq. 8 and 10, and substituting in Eq. 7, the total boundary condition be-
comes

1 fig0**(ýV)dV' x I)laO •+ ClCOS¢ =- + f- go**(ý') Uo(Tj)dý'
2 Tr 1T _ I ' 2

g 1 f'cos 1 g,(,')cos4ý dý'
'cos J --4 1 2 T 1 •-•

g 1W) U, (T) cos~ dý' (11)
2 1T .- 1

where goa(•) = go*(%) + go(ý) and an(') gn(t) = 0, n = 2,3,...

4
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Referring to Eq, 3, 5, and 6, the coefficients of gl(ý) and g0 **(ý) can
easily be solved for in terms of the coefficients of Q1 (,) and a0*() from
'Fables I and 2 for the case n = 0, n = 1. With

Y(, 0) = V g0o*(%) + gl(,) cos, ] (12)

and using Eq. 1, the net loading per unit area on the wing surface be-
comes

Ap pV2 [go *G) + gG( )cos*] (13)

TABLE 1. Matrix Needed To Solve for Cp0 in
Eq. 28 for n = 0

X Mo- I

1 0 0 0
0.0 0 -2 0 0

0 0 -2 0
0 0 0 -2

1.080 0 -0. 080 0
0.5 0. 172 -2. 187 -0. 013 0.028

0.027 0 -2.036 0
-0. 001 0.009 0,000 -2.012

1.202 0 -0. 202 0
1.0 0.484 -2. 521 -0.082 0. 119

0,118 0 -2. 155 0
-0. 002 0.039 0.000 -2.054

TABLE 2. Matrix Needed To Solve for Cpl il
Eq. 28 for n 1

1 0 0 0
0 -2 0 0

0.0 0 0 -2 0
0 0 0 -2

0. 549 0. 381 0. 068 0. 003
-0.119 -1.851 -0.015 -0.016

0. 5 -0. 009 -0. 006 - 1. 982 0.000
0. 001 -0.004 0. 000 - 1. 995

0. 398 0.442 0. 141 0.021
-0. 208 -1. 645 -0. 073 -0.076

1.0 -0. 034 -0. 038 - 1.,904 -0. 002
t0. 000 -0.022 0.000 -1. 970

5
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Recalling that ao0 *(%) is the slope of the wing profile relative to the
wing axis, then, from Fig. 1 the normal force per unit area can be
written

dY

- = Ap cos %O**(,) (14)
dX

dY
-= pV 2 [go**(%) + gl() cos cos aO*,) (15)

dX

dY L
- pV 2 -- [go"**(,) + gl(M) cos p] cos aO**(ý) (16)

dr•

where
2X -L L

L 2 2

Equation 16 can also be interpreted as the local lift normal to the
wing axis per unit length per unit span, and for an element of wing span
Rd4, the local lift in the pitch plane per unit length (Fig. 1) becomes

dY
- cos 4' Rd4 (17)dý

The total lift normal to the wing axis per unit length is then

f 2 1TrdY cos Ld '+4 
] os4 d ' ( 8

0 z cosd bRd¢ J pV 2  -- [g 0o**(,)+g l (ý)cos*]cosa *(•)cos•Rd ([

and the total lift normal to the wing axis bec.mes

f I f - cos4 Rd4' d,
-1 0 d,

pV2 RL 1 2
- 1 [go"-*(ý) + gl(ý)cos 4] cos ao**(;')cos d' d4d
2 0

Y V - 1- [go**(•)cos4' cos 0()

+ gl(r) cos2 4 cos Q0**(r)] dd (19)

6
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For small values of a 0o*({)

Y V 2 RL { {[7o**(,)cos + gl()cos2] de d, (20)

2 -1f0

Since

dM Lý dY

d. 2 d,

the total moment about the mid-chord point due to forces normal to the
wing axis becomes

M pV 2 R )[g0*({)cos, + gl(ý)cos 2 •] d( d 1 21)
?_ f-, 0

Inspection of Eq.] .] and 20 shows that g0**(ý) cor-esponding to the
slope of the profile, a0**(ý) = at + ao*(ý), yields a zero net force nor-
mal to the wing axis, which is the case for a symmetric ring wing at
zero angle of attack. It is apparent then that the total or net normal
force is due solely to the density distribution gl(,) due to angle of
attack a,.

LIFT FORCE ON CYLINDRICAL RING WING

From Eq. 20, the net force normal to the wing axis becomes

Y pV 2 RL .f gl(,)cos2 2 d4 d) (22)

2 .- 1 0

,rpV 2RL I1
Y 2- gf(,) d. (23)

Substituting Eq. 3 in Eq. 23 for the case n 1

TpV 2RLyfT( noIv0)_ 5
Y 0ctg -I+ C sin sin0 dO

2 0 2 Vi1T XR2fo C +cos6 d)
0 snpVt2 Tn 1  Cvl sin v3 sin0 dO (24):•~~ =O1+ C s n 0 d

f sin 0 0 =I

S~L
where X L.

S2R

7
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For v > 1, the second integral term is zero and Eq. 24 then be-
comes

- (25)Y = rrpV 2 XR2 (TrCo0 + C I (25)

By the use of the dimensionless coefficient

Y
cL = RipvzL (26)

the total normal coefficient of lift due to a, becomes

TrXR
L L -(001 I CI11

Tr

CL - (CO0 + ½C1) (27)
2

Recalling the Fourier and Birnbaum expansions

a0n
n 0 - + a a Cos p0, • -COS 0C~n 2 Pl aPn

gn(ý) = Con ctg- + v =I sin e
the solution to the boundary condition represented by Eq. 6 can be re-
duced to the solution of the linear equations (see Appendix)

a0n = C0 n 1 +- -- + biC + boo) + Cln [ + -+boo - b2o
2 2r4 4-r

+-v= 2 1vn(bv-,0 -bv+l,0), p = 0

4Tr

pnpn[-\P- lP -+l p 0n- (bl + boo)

x_ Z v~b~ p b~l) = 1,2 (28)
+ v= I N P. .v=1 HV~ T,3

4.1
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b =- fv(O)cos ýt OdO, 'I = \( - ,'), , = -cos 0 (29)VIJ.
fV(6) Cos vO'Un(,q)dO' (30)

For a cylindrical wing, a0**(r) = 0, at angle of attack al the local
angle of incidence, Eq. 5, becomes

a2 p + a 1 Cos po, p 1, 2 ... (31)

2 f Ir
ap1 al cos pOdO (32)

From Eq. 32, the Fourier coefficients for a 1 , constant, are then
apl = 0, p = 1,2 .... (33)

a01 = 2a,

In matrix notation Eq. 28 becomes

a0n COn
aln Mn Cln

apn Cpn

where the elements of Mn are calculated from Eq. 28 with elements of
the inverse Mn-l shown in Tables 1 and 2 for n = 0, n= 1.

Setting n = 1 in the matrix equation and multiplying both sides by
Mv-,, the solution for the coefficients CP 1 , p = 0, 1, 2 ... takes the form

Co1 a01

C 1 1  =M 1-I all

Cp1 apl
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From Eq. 33

C01 [ 2al
C11 = M 1 -I

Cpl 0 (34)

Inspection of Eq. 27 and setting al = 1 in Eq. 34 show that the nor-
mal coefficient of lift of a cylindrical ring wing per unit angle of attack,
al, can be written

[ (0) Cl (0) (35)CL =-- [C01+I I
2

001(0)[2C01(°
ClI(0) M 1 0

Cz(0) 0

1 CP1( 0 ) (36)

where MI--I is determined by the value of X.

Taking X = 1 and recalling a rule for matrix multiplication, the
values in the first column of Table 2 multiplied bythe factor 2 in Eq. 36
gives a solution to the coefficients CpI( 0 ), p = 0, 1, 2 ..... ... Thus for
X = 1, C01(0) = 0.796, CII(0) = -0.415, and for a unit angle of attack in
radians, CL = 0.92. The solution to Eq. 36 can also be found in Table 3.
Figure 3 shows the trend of the slope of the lift curve in degrees for
different values of X.

For the case of a ring wing with k = 0, C01(0) = 2, Cll(0) =0 and
from Eq. 35 for unit angle of attack in radians, CL = IT.

10
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TABLE 3. The Birnbaum CoefficientsoCPlttc of the
Vortex Density g, for Unit Angle of Attack

X COl( 0 ) Cc1 (0 ) C21(0) C 3 1 (0 ) C41(0)

0 2.000 0 0 0 0

0.5 1. 098 -0. 238 -0. 018 0.002 0

0. 796 -10.415 -0.068 0. 000 0

0.5 1.0 1 5
0 050 1 I - 0 030

0 CL X 3.. 1 O . 0 6

C CL X. 3. 0.6< XS 1.3

0 040 1- 0 0

.1

0 030 0010

0.I 0 1 000
0.0 0.5 1.0

FIG. 3. Total Lift Coefficient per Unit Angle
of Attack, deg, versus X.

• 11

m lnL• •n-n a •A•# w~mM I • i•-•- HI min m i
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MOMENT FOE CYLINDRICAL dING WING

From Eq. 21, the total moment about the mid-chord point is written

M = PV2R IL2 { g1 ( gl()cos 24c d2 dý (37)

where from Fig. I the moment is negativc clockwise.

Integratioa on 6 gives

(1",A = vrpV 2- X2 R3 J -1 gj(ý)dý, (38)

Using the Birnbaum series expansion for gl(,) in Eq. 3 and, re-
calling that ý = -cos 0, Eq. 38 bccomes

M = TpV-X2R3f - C01 ctg-+ Cv sinveO sine cose dO

2

= TPV2 X2R3 - Col 1+ c'_O) sin cose + Y1 Cv1 sinv0 sinOcosO] dO

sin 20
= rrpV22 R3 C0 1 (cos O + cos 2 0) + vAl Cvl sinvO _ dO

0 - 2

/ in22e
2 3r (_C01 s0 C01 s?()C21snzo)

= rpV22 R 00 cose- 0 cos- dO (39)
0 2

T( T -0T21- (40)M =rpV2X2R3 -Col 2 14

Defining the dimensionless c.,efficient as

M
CM with CM negative clockwise

2iTR L
2 ½p V2

then from Eq. 40 the total moment coefficient due to normal forces can
be written

1T

Cm -1(2001 + 021) (41)
16

12.
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The moment coefficient for 1 Lit angle of attack becomes

CM 16 (2c 0 1 o , C21(0)

and is plo)tted in Fig. 4 for various values of X.

05 ;.0 1S
-o0o135 1 T -1 -0009 5II O CM vs. )",O. 1 :5 < SO 6

•CM vs X, 0O6SX< 1 3

-0.0110 -0 0070

-0 0085 -0 0".

o0.0060 I.I -0.00Z0
0.0 0.5 1.0

x

FIG. 4. Total Momenb Coefficient per Unit
Angle of Attack, deg, Versus X.

AERODYNAMIC CENTER OF LIFT

Defining the aerodynamic center measured from the mid-chord
point as

M
Xac =

Y

or
Xac CM

L CL

13
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then from Eq. 27 and 41, the aerodynamic center of l.ift for ring wings
becomes

IT

Xac _ ;(zco1 + C21)

Xac (001 +021)(42)

For X = 0, and from Table 2, together with Eq. 34, C01 2aI,
C I = C21 = 0. Equation 42 then gives the well-known two-dimensional
result

L L LXac , --- < X <-- (43)

4 2 2

For X = 1, from Table 2, Eq. 34 and 42,

C01 = 0.398 (2aI)

CI = -0. 208 (2aI)

C21 = -0. 034 (2al)

Xac 1 (1. 592-0. 0 6 8)a1

L 8 (0. 796-0. 208)a 1

Xac = -0. 325L (44)

The dependency of the wing aerodynamic center on the shape
parameter, X, of the ring wing is shown in Fig. 5. Relative to a two-
dimensional airfoil of unit-span length, a chord-diameter ratio of X = 1
for a cylindricalwing of spanlength 2TrR will cause a 30% shift in the aero-
dynamic center toward the leading edge.

CONCLUSIONS

A ring wing with a small profile slope (Fig. 1) is replaced by a
continuous distribution of vortex rings of constant radius. Within the
limits of linearized theory, the velocities and pressures on the cam-
bered ring %ing with conicity are represented by the velocities and
pressures on a cylindrical vortex sheet. The boundary condition on
the ring vicng is given in Eq. 11. Inspection of Eq. 11 and 20 shows that

14
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-0 330 
_ _

-0 30S

-0 280

-0.Z55

Th in airfoil theor) (unit span)

-0. 30 0 1
05

FIG. 5. Aerodynamic Center
Versus X.

tie slope of a symmetric ring wing profile, a 0 **(r), gives a zero net
force normal to the wing axis and that the total normal force results
from free-stream angle of attack. Thus as a first order approximation
the normal force on a ring wing of arbitrary profile shape is equivalent
to the normal force on a cylindrical ring wing.

For a cylindrical wing at angle of attack, al, where ac**() =
0, the boundary condition is defined in Eq. 28 for n = 1, i.e., the re-

maining terms containing aI and gl in Eq. 11. A reduction of the
boundary condition to the linear algebraic form in Eq. 28 is given in
the Appendix. For n = 1, with coefficients of radial wash, apl, given,
the coefficients of the Birnbaum expansion for vorticity, Cpl, can be
determined from the set of linear algebraic equations shown in Eq. 28.
This gives the lift and moment for a cylindrical wing as defined in
Eq. 27 and 41..

Figure 6 gives the total lift coefficient, CL,' versus al in degrees
ýor different values of X. The lift and moment coefficients per unit
angle of attack in degrees are plotted for different values of the ring
wing parameter K as shown in Fig. 3 and 4. The location of the wing
aerodynamric center measured from the mid-chord point is shown in
Fig. 5 for different values of X. For X = 0, the aerodynamic center is
located at the 1/4-chord point, which is the two-dimension:l result. An
example of the three-dimensional effect due to curvature of the chord
plane is demonstrated for the case X = 1 which indicates about a 30%
shift in the aerodynamic center apstream from the i/4-chord point.

15
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O. ll [ 1 I-

0.080

0,

0 050 0.5

0.5 10 1.5 20 25

FIG., 6. Total Lift Coefficiwnt Versus
a,, deg, for Various Values of X.

Tables 1 and 2, obtained from E;. 28, give the Birnbaum coeffi-
cients required to calculate the lift, moment, and aerodynami& center
for isolated cylindrical wings. Table 3 was obtained from Eq 36 and
Table 2. Recent investigations sh1nw a significant change in aerody-
namic characteristics of the ring wing in the presence of a central
body. It has been found that because of the presence of axial forces
further changes are apparent in wing loadings and location of the aero-
djnamic center of lift due to wing camber and conicity. The results of
this study will be published in the near future.

16
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Appcndix

SOLUTION TO THZ BOUNDARY CONDITION

The general boundary condition is written

n(•) = gn(,')dY + .. ... dr' + g(,')Un(1 )d,' (A-i)
4 fI 2'M f 1 -~ •' I

From Eq. 3 the second term in Eq. A- 1 becomes

1 gn(ý')dý' Con I l CnO0 n0,IZ..(-)

cosv n=0,1,2 ... (A- 2)

and the integral expression in the first term of Eq. A- 1 becomes

('1 Tr
gn(•')d?' = 4C-n +- C1 r (A-3)

The last term in Eq. A- I is then

J gn("')Un(r.jdr' =J C 0 nlctg-2+ v vn sinvO' Unhr)sin0' dO'

= C0n+C0ncOS0'+ vj vn sinvsin, N)'

-= C~n Un(T')de' + Co~ncos 0' Un(Tr)dO'

+J' + CvnsinvO' sin0' Un(T/)d0' (A-4)

From the ider.tity
I-_

2sinv0' sine' = -cos(v + 1)0' + cos (v - 1)0' (A-5)

A 17

4
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the last integral term in Eq. A-4 becomes

i Cvn sinvO' sin0IUn(TI)dO'

CV Tr cos(V' - 1)01 - cos(V + 1)01 (-6
Jov =1 Jo12]f

C~ fo Un(il)dO, (A- 6)
V = C ln 2

fv(0) = cos vO' Un(I)dD' (A-7)

Expanding fv(O) in an even Fourier series

fv(O) = + Xb cosp.0 (A-8)

2 Tr
P= f V(e )cos t40 dO

fo(P) = U,,()dO'

f1(1) = cos 0'Un(i)dO'k f0
fV - 1(0) =f cos (v - 1)8' Un(l)dO'

fV+l) =J Cos (v +1) 0' Un(T))dO' (A- 9)

From Eq.A-9, Eq.A-6 becomes

f IT = C n sinvl ' sinO'Un(i)dO' = C vnv ) A- 10)

=O 2

Equation A-4 is then

18
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C1  
-lO f,+, (O))jgn(Y)Unhi)dý' Gonlifo(O)+fi(O)l+ 1 2 (A-11)

c~()=an+ a~nsP (A-12)
2 1pnOPI From Eq. A- 7 and A- 9

I =L - Cos ve'Un(fl)dO' cos ýL dO

2 fI
bv4 cos ye, Gas jloun(f)dO' dO (A -13')

TrJ

From Eq.A-2, A-3, A-11, and A-12, Eq.A-1 becomes

a~ n nTrTr
P~l apnc ~ (TrCOn + -Cin'

2 41 2

+ - - I C 1 Cos vo) + [f0 (i3 + f1 (O3)]

+- 2 -v1J+(~ n =0,1,2 (A-14)

Fr om Eq. A- 9, Eq, A- 14 is then

a~n n!COn 1
- .1a Cos1 - r C Cos v

2 p =1 pn 4'Cn+2Cn 2 2v v

>UCOn bO bl0

21T 2 2.1 0J

i0+ ~bv+, Ld cose) Los(A - 19)pj2
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Equation A- 15 can be written

2+ 2 apn Cosp 4 (i*rC-n + - Cln + ( -2 Cvncos v)

+\COn( boo bl )+x Cvii bv_, C bv+i, ol++ + V- = _byl

2Z Z 2r 2 2 Tr 2

+-- Cn X (bo0t + bl9 cos ýLO

x Cvn
+- -1, 2I -b• Cos +l (A-16)2Tr V=i 2 ý~ +,ý

Equation A-16 represents the general boundary condition for ring
wings in series form. Let

C Cos v= C cos pOv=l v p=l pn

and let p =t in Eq. A-16.

Then

nX~r nX~r

an + npn=l cs pe - COn + 4 Cln + COn - C pncOsp[=l r2 4

x x

+-- COn (boo + bl 1) +C vO PZ=r 4r v=i _~ul,o0-bv+l,O0)

+-- Con 2:l(bop + bl p) cos p

+- 1 vn C (bv-l, p -bv+l, p) cos pO (A-17)
2.-r Vlv ~

A solution to the general wing boundary condition can now be rep-
resenled by equating terms in Eq. A-17 containing cos pO, p ; 0, 1,2 ...

For the case p = 0, or terins independent of cos pO

20
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aon = 1 + - + - (blo + boo) + Cln + - (boo - b2,o)
2 2,rr 4 4n

S+ - V C0n(bv), p 0 (A -18);4 7 V = 2 in(b _ , 0 - b y , 0 ) =
4wr

For p 1 0 or terms dependent on cos pO

x2apn cos pO = - Cpn cos p0 + p(+e
p=l z 1pnl - COn =1(bop + blp) cos pO

Tr

GvCn
+-b(bi,) Cos pe (A-19)TrV=1 -2 p=l V-1 P -bv+l.,

Isolating the term fcr v = p, Eq. A-19 becomes

IXCOn
2apn cos pO = - C:cos pe + -- 1l (bop + blp) cospO

=T

X Cpn
+ - -- (b p 1 , p -bp+l, p) cos po

Tr 2 v=p

X Cv
+ - I p -bv+tt cos p (A-20)V=l 2 L- Pwr v. 2

V4P

Expanding Eq. A-20, equating corresponding terms and dividing
through by cos pO, p = 1,2, ...

Cpn XCOn X
apn + (bo + blp) + - Cpn (bp-l, - p+l,

pn 2 2 p 4r_

+ -- v2= Cn (byl PbvlP) (A- 21)

47r v~l v

I LX 1
apn = Cpn - - (bp-1 , P -bp+l' p) + COn- (blP + bop)

4+- V= vn (byl, p -b+l, P), = 1, 2 ... (A-22)

21
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where the coefficients bvp, p = 4i, are defined by Eq. A-7 and A-9.

Equations A- 18 and A-22 represent a set of linear algebraic equa-
tions with unknown coefficients, Cpn, the solutions of which satisfy the
ring wing boundary condition in Eq. A-1. A solution of Cpn is available
on an IBM 7090 computer for any value of X and any component of local
incidence angle, an(ý) represented by the set apn, p = 0, 1, 2.....
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